

Estd. 1962 'A++" Accredited by

NAAC (2021)

With CGPA 3.52

SHIVAJI UNIVERSITY, KOLHAPUR - 416004, MAHARASHTRA

PHONE:EPABX-2609000, www.unishivaji.ac.in, bos@unishivaji.ac.in

शिवाजी विद्यापीठ, कोल्हापूर -४१६००४,महाराष्ट्र

दूरध्वनी-ईपीएबीएक्स -२६०९०००, अभ्यासमंडळे विभाग दुरध्वनी ०२३१—२६०९०९४ ०२३१—२६०९४८७

SU/BOS/Science/09

Date: 02/01/2024

To,

The Principal,	The Head/Co-ordinator/Director
All Concerned Affiliated Colleges/Institutions Shivaji University, Kolhapur	All Concerned Department (Science) Shivaji University, Kolhapur.

Subject: Regarding syllabi of M.Sc. Part-II (Sem. III & IV) as per NEP-2020 (1.0) degree programme under the Faculty of Science and Technology.

Sir/Madam,

With reference to the subject mentioned above, I am directed to inform you that the university authorities have accepted and granted approval to the revised syllabi, nature of question paper and equivalence of M.Sc. Part-II (Sem. III & IV) as per NEP-2020 (1.0) degree programme under the Faculty of Science and Technology.

M.Sc.Part-II (Sem. III & IV) as per NEP-2020 (1.0)					
1.	Computer Science	7.	Biochemistry (HM)		
2.	Data Science	8.	Biotechnology (HM)		
3.	Information Technology (Entire)	9.	Biotechnology		
4.	M.C.A.	10.	Medical Information Management		
5.	Food Science & Nutrition	11.	Environmental Science		
6	Food Science & Technology	12.			

This syllabus, nature of question and equivalence shall be implemented from the academic year 2024-2025 onwards. A soft copy containing the syllabus is attached herewith and it is also available on university website <u>www.unishivaji.ac.in NEP-2020 (Online Syllabus)</u>

The question papers on the pre-revised syllabi of above-mentioned course will be set for the examinations to be held in October /November 2024 & March/April 2025. These chances are available for repeater students, if any.

You are, therefore, requested to bring this to the notice of all students and teachers concerned.

Thanking you,

Registrar S. M. Kubal

Сору	to:		
1	The Dean, Faculty of Science & Technology	8	P.G. Admission/Seminar Section
2	Director, Board of Examinations and Evaluation	9	Computer Centre/ Eligibility Section
3	The Chairman, Respective Board of Studies	10	Affiliation Section (U.G.) (P.G.)
4	B.Sc. Exam/ Appointment Section	11	Centre for Distance Education

SHIVAJI UNIVERSITY, KOLHAPUR

Established: 1962

 $\mathbf{A}^{\text{++}}$ Accredited by NAAC (2021) with CGPA 3.52

Structure and Syllabus in Accordance with National Education Policy - 2020

1 autonai Education I oney 2020

with Multiple Entry and Multiple Exit

Master of Science Biochemistry (H.M.)

under Faculty of Science and Technology

(To Be Implemented from Academic Year 2024-25)

INDEX

Sr.	Contents	Page
No.		No
1	Preamble	03
2	Duration	03
3	Eligibility for Admission	03
4	Medium of Instruction	03
5	Programme Structure	04-08
6	Programme Outcomes (POs)	09
7	Course Codes	09
8	Syllabus	10-26
9	Scheme of Teaching	26
10	Examination Pattern	27
11	Nature of Question Paper and Scheme of Marking	28-29
12	Equivalence of Courses	30-31

1. Preamble:

The two years M. Sc. in Biochemistry (NEP) subject under Horizontal Mobility (H.M.) program is formulated for developing competent biochemists/microbiologists//biotechnologists for which significant job opportunities exist in this country and abroad. The course is based on interdisciplinary nature of Chemistry, Quantitative Biology, Genetics, Microbiology and Biophysics. The program obliges students to read original publications and envisages significant inputs in laboratory work, communication skill, creativity, planning, execution and critical evaluation of the studies undertaken. This program gives common basic knowledge (Biochemistry, Biomolecules, Proteins including Enzymology, Molecular Biology, Tools and Techniques and Basics in Research Methodology which includes Biostatistics and Computers) at first year level to become good biochemists/ microbiologists/ biotechnologists. The specializations introduced in the course at second year level are in the disciplines of Immunochemistry, Genetic Engineering, Fermentation Technology, Bioinformatics, General Biotechnology, Plant and Animal Cell Biotechnology, Microbiology including Medical Microbiology, Food and Dairy Microbiology and Environmental Microbiology.

2. Duration:

Two-Year full-time course with Four semesters.

3. Eligibility for Admission:

- B.Sc. Degree (Three years with Six semesters full time course) in Biochemistry/ Biotechnology/Chemistry/ /Microbiology/Botany/ Zoology/Life Sciences as principle subject.
- **ii**) Student has to qualify the entrance examination conducted by Shivaji University for the respective academic year.

4. Medium of Instruction:

English

5. Program Structure:

Structure in Accordance with National Education Policy - 2020 With Multiple Entry and Multiple Exit Options M.Sc. Biochemistry(H.M.) Part – I (Level-6.0)

	Course Code	Tea	ching Scher	ne			Examination S	Scheme		
		Theo	ry and Pract	ical	Unive	rsity Assessme	ent (UA)	Interna	l Assessment	(IA)
		Lectures (Hours / week)	Practical (Hours / week)	Credit	Maximum Marks	Minimum Marks	Exam. Hours	Maximum Marks	Minimum Marks	Exam. Hours
					Semester-I					
Major	BCH 101	4		4	80	32	3	20	8	0.5
Mandatory Theory	BCH 102	4		4	80	32	3	20	8	0.5
Major Elective Theory	E- BCH 103A OR E- BCH 103B OR E- BCH 103C	4		4	80	32	3	20	8	0.5
Major	P-BCH 104		8	4	100	40	12			
Mandatory Practical	P-BCH 105		4	2	50	20	6			
Research Methodology	RM- BCH 106	4		4	80	32	3	20	8	0.5
То	tal			22	470			80		
					Semester-II					
Major	BCH 201	4		4	80	32	3	20	8	0.5
Mandatory Theory	BCH 202	4		4	80	32	3	20	8	0.5
Major Elective Theory	E- BCH 203	4		4	80	32	3	20	8	0.5
Major	P-BCH 204		8	4	100	40	12			
Mandatory Practical	P- BCH 205		4	2	50	20	6			
OJT/FP	OJT-BCH 206 OR FP- BCH 206			4				100	40	*
	Total			22	390			160		
Total (Sem	I + Sem II)			44	860			240		

• BCH – Major Mandatory Theory	• Total Marks for M.ScI: 1100
• P-BCH – Major Mandatory Practical	• Total Credits for M.ScI (Semester I & II): 44
• E-BCH – Major Elective Theory	• Separate passing is mandatory for University and Internal Examinations
• RM - BCH - Research Methodology	
• OJT- BCH /FP- BCH - On Job Training/ Field Project	
*Evaluation scheme for OJT/FP shall be decided by concerned BOS	· · · · · · · · · · · · · · · · · · ·
Evaluation scheme for OJ 1/11 shan be decided by concerned DOS	
Requirement for Entry at Level 6.0:	
Requirement for Entry at Level 6.0:	y/Botany/ Zoology/Life Sciences as principle subject and appeared for
Requirement for Entry at Level 6.0:	
Requirement for Entry at Level 6.0: B. Sc in Biochemistry/ Biotechnology/Chemistry/ /Microbiology	
Requirement for Entry at Level 6.0: B. Sc in Biochemistry/ Biotechnology/Chemistry/ /Microbiology entrance examination (as per eligibility).	y/Botany/ Zoology/Life Sciences as principle subject and appeared for
Requirement for Entry at Level 6.0: B. Sc in Biochemistry/ Biotechnology/Chemistry/ /Microbiology entrance examination (as per eligibility). Requirement for Exit after Level 6.0:	y/Botany/ Zoology/Life Sciences as principle subject and appeared for

Structure in Accordance with National Education Policy - 2020 With Multiple Entry and Multiple Exit Options M.Sc. Biochemistry (H.M.) Part – II (Level-6.5)

	Course Code	Tea	ching Schei	me			Examination	Scheme		
		Theo	ory and Pract	tical	Unive	rsity Assessme	ent (UA)	Interna	l Assessment	(IA)
		Lectures Hours	Practical Hours	Credit	Maximum Marks	Minimum Marks	Exam. Hours	Maximum Marks	Minimum Marks	Exam. Hours
		(Per	(Per							
		week)	week)		Semester-III					
Major	BCH 301	4		4	80	32	3	20	8	0.5
Mandatory	BCH 301	4		4	80	32	3	20	8	0.5
Theory	BCH 302 BCH 303	4		4	80	32	3	20	8	0.5
Theory	E- BCH 304 A	4		4	80	52	5	20	0	0.5
Major	OR				0.0	22		•		
Elective	E- BCH 304 B OR	4		4	80	32	3	20	8	0.5
Theory	E-BCH 304 C									
Major	P-BCH 305									
Mandatory Practical			4	2	50	20	6			
Research Project	RP- BCH 306		8	4	100	40	12#			
	otal			22	470			80		
		•			Semester-IV				•	
Major	BCH 401	4		4	80	32	3	20	8	0.5
Mandatory	BCH 402	4		4	80	32	3	20	8	0.5
Theory	BCH 403	4		4	80	32	3	20	8	0.5
Major Elective Theory	E- BCH 404 A OR E- BCH 404 B OR E- BCH 404 C	4		4	80	32	3	20	8	0.5
Research Project	RP- BCH 405		12	6	150	60	18##			
	Total			22	470			80		
Total (Sem	III + Sem IV)			44	940			160		

BCH – Major Mandatory Theory	• Total Marks for M.ScII: 1100				
P-BCH – Major Mandatory Practical	• Total Credits for M.ScII (Semester III & IV): 44				
• E- BCH – Major Elective Theory	• Separate passing is mandatory for University and Internal Examinations				
RP- BCH - Research Project					
# Evaluation Scheme for Research Project shall be decided by concerned BOS					
## Evaluation Scheme for Research Project shall be decided by concerned BOS					
Requirement for Exit after Level 6.5:					
Students can exit after completion of Level 6.5 with Post Graduate in Biochemistry					
	v				

Course Code Details: NEP – Biochemistry (H.M.) (NEP – 2020)

	Semester I		Semester II
BCH 101	Proteins: Structure and Functions (4 Cr)	BCH 201	Enzymology (4 Cr)
BCH 102	Biomolecules (4 Cr)	BCH 202	Molecular Biology (4 Cr)
E- BCH 103A E- BCH 103B	Cell Biochemistry & Nucleic Acids (4 Cr) OR Taxonomy and Molecular Systematics (4 Cr)	E- BCH 203	Tools and Techniques in Biological Sciences (4 Cr)
E- BCH 103C	OR Advances in Drug and Clinical Research (4 Cr)		
P-BCH 104	Laboratory Course - I (4 Cr)	P- BCH 204	Laboratory Course - III (4 Cr)
P- BCH 105	Laboratory Course - II (2 Cr)	P- BCH 205	Laboratory Course - IV (2 Cr)
RM- BCH 106	RM- BCH 106 Research Methodology (4 Cr)		On Job Training (4 Cr) OR Field Project (4 Cr)
	Semester III		Semester IV
BCH 301	Genetic Engineering (4 Cr)	BCH 401	Bioinformatics (4 Cr)
BCH 302	Immunology (4 Cr)	BCH 402	Bioenergetics (4 Cr)
BCH 303	Biomembranes and Cytoskeleton (4 Cr)	BCH 403	Neurochemistry (4 Cr)
E- BCH 304A OR E- BCH 304B OR E- BCH 304C	Fermentation Technology I (4 Cr) OR Clinical Biochemistry I (4 Cr) OR Biochemical and Environmental Toxicology I (4 Cr)	E- BCH 404A OR E- BCH 404B OR E- BCH 404C	Fermentation Technology II (4 Cr) OR Clinical Biochemistry II (4 Cr) OR Biochemical and Environmental Toxicology II (4 Cr)
P- BCH 305 RP- BCH 306	Laboratory Course - V (2 Cr) Research Project (4 Cr)	- RP- BCH 405	Research Project (6 Cr)

6. Programme Outcomes (POs):

- Students should have gain knowledge in fundamental concepts of Biomolecules, Cell structure, Enzymes and Molecular Biology. The graduate should also get sufficient knowledge of the applied subjects like Genetic Engineering, Fermentation Technology, Tools and Techniques in Biosciences, Bioinformatics etc.
- Student should become well versed with the qualitative and quantitative evaluation of various biomolecules, enzyme assays, isolation, purification and characterization of biologically important proteins along with various techniques like PCR, gene cloning and transformation used in the field of Molecular Biology and Clinical Biochemistry. He/she also should be able to utilize the knowledge of bioinformatics in the field of protein structure prediction and molecular modeling.
- Candidate should i) gain capability of handling independent research projects; ii) develop skills for planning and successful execution of the experiment relevant to research problems and iii) be able to analysis of the data obtained from experimentation and report the results in a meaningful way.

7. Course Codes:

M.Sc. Semester – III				
Major Mandatory				
BCH 301: Genetic Engineering (4 Credit)	MSU0325MML96I1			
BCH 302: Immunology (4 Credit)	MSU0325MML96I2			
BCH 304: Biomembranes and Cytoskeleton (4 Credit)	MSU0325MML96I3			
P-BCH 305: Laboratory Course V (2 Credit)	MSU0325MMP96I2			
RP- BCH 306: Research Project (4 Credit)	MSU0325RPP96I			
Major Elective				
E-BCH 304A: Fermentation Technology I (4 Credit) OR	MSU0325MEL96I1			
E-BCH 304B: Clinical Biochemistry I (4 Credit) OR	MSU0325MEL9612			
E-BCH 304C: Biochemical and Environmental Toxicology I (4 Credit)	MSU0325MEL96I3			
M.Sc. Semester – IV				
Major Mandatory				
BCH 401: Bioinformatics (4 Credit)	MSU0325MML96J1			
BCH 402: Bioenergetics (4 Credit)	MSU0325MML96J2			
BCH 403: Neurochemistry (4 Credit)	MSU0325MML96J3			
RP- BCH 405: Research Project (6 Credit)	MSU0325RPP96J			
Major Elective				
E-BCH 404A: Fermentation Technology II (4 Credit) OR	MSU0325MEL96J1			
E-BCH 404B: Clinical Biochemistry II (4 Credit) OR	MSU0325MEL96J2			
E-BCH 404C: Biochemical and Environmental Toxicology II (4 Credit)	MSU0325MEL96J3			

8. Syllabus:

SEMESTER - III

BCH 301	Genetic Engineering (4 Cr)	60 Hrs
Credit I	 Basics of Recombinant DNA Technology: Restriction Analysis: Types of Restriction Enzymes - Type I, II and III, Restriction Modification Systems, Type - II Restriction Endonucleases and Properties, Isoschizomers and Neoschizomers, mcr/mrr Genotypes, Cohesive and Blunt End Ligation, Linkers, Adaptors, Homopolymeric Tailing. Labeling of DNA: Nick Translation, Random Priming, Radioactive and Non-radioactive Probes, Use of Klenow Enzyme/Fragment, T4 DNA Polymerase, Bacterial Alkaline Phosphatase, Polynucleotide Kinase. Hybridization Techniques: Northern, Southern, Western and Colony Hybridization, Fluorescence <i>in situ</i> Hybridization, Restriction Maps and Mapping Techniques, DNA Fingerprinting, Chromosome Walking & Chromosome Jumping. DNA-Protein Interactions: Electromobility Shift Assay, DNase I Foot-printing, Methyl Interference Assay. 	15 Hrs
Credit II	Cloning Vectors: Gene Cloning Vectors: Plasmids (Natural and Synthetic), Bacteriophages, M13, MP Vectors, Phagemids, Lambda vectors; Insertion and Replacement Vectors, EMBL, λDASH, λgt10/11, λZAP etc. Cosmid Vectors, Artificial Chromosome Vectors (YACs, BACs), Animal Virus Derived Vectors- SV-40, Vaccinia/Bacculo & Retroviral Vectors, Expression Vectors; pMal, GST, pET-based Vectors Baculovirus and <i>Pichia</i> Vectors System. Applications: His-tag, GST-tag, MBP-tag etc. Restriction Proteases, Intein-based Vectors. Inclusion Bodies, Methodologies to reduce formation of inclusion bodies.	15 Hrs
Credit III	 Cloning Methodologies: Insertion of Foreign DNA into Host Cells: Transformation, Transduction, Conjugation, Transfection: Chemical and Physical Methods, Liposomes, Microinjection, Macroinjection, Electroporation, Biolistics, Somatic Cell Fusion, Gene Transfer by Pronuclear Microinjection. Plant Transformation Technology: Basis of Tumor Formation, Hairy Root, Features of Ti and Ri Plasmids, Mechanism of DNA Transfer, Role of Virulence Genes, Use of Ti and Ri as Vectors. Cloning and Expression in Yeasts (Saccharomyces, Pichia etc.), Animal and Plants Cells, Methods of Selection and Screening, cDNA and Genomic Cloning, Expression Cloning, Yeast two hybrid System, Phage Display. DNA Libraries: Construction of cDNA libraries in Plasmids and Screening Methodologies, Construction of cDNA and Genomic DNA 	15 Hrs

	Libraries in lambda Vector, Jumping Libraries. Principles in Maximizing Gene Expression.	
Credit IV	 Primer Design, Fidelity of Thermostable Enzymes, DNA Polymerases, Types of PCR: Multiplex, Nested, Reverse Transcriptase, Real Time, Touchdown, Hot Start, Colony, Cloning of PCR Products, T-Vectors, Proof -reading Enzymes, PCR in Gene Recombination, Deletion, Addition, Overlap Extension, and SOEing, Site Directed Mutagenesis, PCR in Molecular Diagnostics, Viral and Bacterial Detection, PCR Based Mutagenesis. Applications: Sequencing Methods: Enzymatic DNA Sequencing, Chemical Sequencing of DNA, Principle of Automated DNA Sequencing, Next Gene DNA Sequencing Methods (SOLiD, Ilumina and Pyrosequencing), RNA Sequencing, Chemical Synthesis of Oligonucleotides. Gene Silencing Techniques: Introduction to siRNA and siRNA Technology, micro RNA, Construction of siRNA Vectors, Principle and Applications of Gene Silencing. CRISPR, CRISPR/Cas9 Technology. Gene Knockouts and Gene Therapy: Creation of Knockout Mice, Disease Model, Somatic and Germ-line Therapy <i>in vivo</i> and ex-vivo, Suicide Gene Therapy, Gene Replacement, Gene Targeting. Other Applications: Transgenics, Genome Projects and their Implications of Recombinant DNA Technology in Medicine, Agriculture, Veterinary Sciences and Protein Engineering. 	15 Hrs

- 1. Sambrook J, Fritsch E. F. and Maniatis Molecular Cloning, vol. I, II, III, 2nd edition, Cold Spring Harbour Laboratory Press, New York. 1989
- 2. D.M. Glover and D.B. Hames, DNA Cloning: A Practical Approach IRL Press, Oxford, 1995
- 3. P.B. Kaufman, W. Wu , D. Kim and L.J. Cseke, Molecular and Cellular Methods in Biology and Medicine, CRC Press Florida 1995
- 4. S.L. Berger and A. R. Kimmel, Methods in Enzymology Guide to Molecular Cloning Techniques, Vol. 152 Academic Press Inc, San Diego, 1996
- 5. V. Goedel, Methods in Enzymology Gene Expression Technology, Vol. 185D. Academic Press Inc, San Diego, 1990
- 6. D. A. Mickloss and G. A Freyer, DNA Science: A First Course in Recombinant Technology, Cold Spring Harbour Laboratory Press, New York, 1990
- 7. S. B. Primrose, Molecular Biotechnology, 2nd Ed. Blackwell Scientific Publishers, Oxford, 1994
- 8. J. A. Davis and W. S. Reznikoff, Milestones in Biotechnology: Classic Papers on Genetic Engineering, Butterworth-Heinemann Boston 1992

- 9. M. R. Walker, and R. Rapley Route Maps in Gene Technology, Blackwell Science, Oxford, 1997
- 10. S. M. Kingsman, Genetic Engineering: An Introduction to Gene Analysis and Exploitation in Eukaryotes, Blackwell Scientific Publications, Oxford, 1998 11. S. T. Nicholl, An Introduction to Genetic Engineering, 3rd Edition. Desmond Cambridge
- University Press, 2008.
- 12. Cristopher Howe, Gene Cloning and Manipulation, 2nd ed. Cambridge University Press, 2007.

BCH 302	Immunology (4 Cr)	60 Hrs
Credit I	 Fundamentals and Anatomy of Immune System: Immunity – Innate and Acquired Immunity, Components of Innate and Acquired Immunity. Antigen, Haptens, Adjuvants, Mitogens, Antibodies – Structure, Functions. The Anatomy of the Immune Response: Cells and Organs of Immune System, Regulation of Immune Response – Humoral and Cell Mediated Response. 	15 Hrs
Credit II	 Immunity to Infection: Antigen Processing and Presentation, MHC, Complement System, T & B Cell Activation. Bacterial, Viral, Protozoal and Parasitic Infections with reference to (Diphtheria, Influenza Virus, Malaria and Helminthus) with specific representative examples of each group. Vaccines – Active and Passive Immunization, DNA Vaccines, Multivalent Subunit Vaccines, Synthetic Peptide Vaccines. 	15 Hrs
Credit III	 Clinical Immunology: Hypersensitivity: Type I, II, III, and IV Reactions. Autoimmunity – Organ Specific and Systemic Autoimmune Diseases. Treatment of Autoimmune Diseases. Transplantation and Tumor Immunology: Graft Rejection, Tissue Typing, Immunosuppressive Therapy and Clinical Transplantation. Tumor Antigens, Cancer Immunotherapy. Immunodeficiency Diseases - Phagocytic, Humoral, Cell mediated Deficiencies and SCID, AIDS- Causes, Syndrome, Diagnostic Tools, Treatment and Development of Vaccine 	15 Hrs
Credit IV	Immunotechnology: Antigen antibody Interactions: Principles, Types and Applications of Agglutination, Precipitation, Complement Fixation, Viral Neutralization, Immuno-diffusion, Immuno-electrophoresis, ELISA, RIA and Western Blotting Monoclonal Antibodies: Hybridoma Technology, Bispecific Monoclonal Antibody, Humanized Monoclonal Antibody, Various Cellular Technologies. Automation in Immunological Techniques: Auto Analyzers used in Immunology, FACS etc.	15 Hrs

- 1. R A Goldsby, Thomas J. Kindt, Barbara A. Osborne. Kuby Immunology;
- 2. Roitt I. M., Brostoff J. and Male D. Gower Immunology Medical Publishing London.
- 3. Lippencott Raven Paul Fundamentals of Immunology 4th ed., (1999).

BCH 303	Biomembranes & Cytoskeleton	60 Hrs
Credit I	StructureHistorical perspectives, organization of lipids in micelles,liposomes. Components, properties and characterization of lipidbilayer. Asymmetry, fluidity, lipid-lipid and lipid-proteininteractions. Merits and demerits of various membrane models.Singer and Nicolson - fluid mosaic model.Assembly Of BiomembraneClassification of the membrane lipids, Biosynthesis and transportof phospholipids to plasma membrane and other organellemembranes. Role of transport proteins and flippase. Biosynthesisof membrane proteins. Topology of membrane proteins, Role ofendoplasmic reticulum - post translational modifications, coreglycosylation and targeting of proteins. Temporal problemsinmembrane, cell organelle, mytochondria, chloroplast, nucleus,lysosomes, and exoplasmic location, targetting signals andadaptor proteins. Role of Golgi bodies in protein glycosylationand targetting. Diseases associated with defect in proteintargeting. (cystic fibrosis, Familial hyper cholestrelemia and I-cell diseases.)	
Credit II	 Transport Across Biomembranes Organization and structure of membrane-transport proteins, Active , passive and facultative transport and ion channels. Symport and antiport system. Organization, mechanism and significance of Na⁺ - K⁺ ATPase, Na⁺ - H⁺ ATPase, and Ca⁺⁺- ATPase pumps. Inhibitory studies. Special bacterial transport systems. Permeases, Phosphotransferase system, transport through binding proteins. Transport of macromolecules. Endocytosis, pinocytosis and phagocytosis, receptor mediated endocytosis, transcyctosis. Role of calcium, clathyrin and other associated proteins in receptor mediated endocytosis. Fates of receptors and ligands. Specialized transport systems. Transport of water – Aquaporins, Transepithelial transport of glucose / amino acids. 	

Credit III	Signaling At Cell Surface	15 Hrs
	Structure, types and function of signaling molecules and cell	
	surface receptors – hormones, growth factors. Signaling	
	Molecules, Modes of Cell-Cell Signaling and their receptors.	
	Synthesis of Nitric Oxide and Carbon Monoxide and their	
	physiological significance.	
	Receptor Families	-
	G Protein – coupled receptor, Structure, function, Activation &	
	inhibition of adenyl cyclase, Activation of phospholipase C,	
	Activation of gene transcription – CREB proteins, Cell adhesion –	
	Cadherins, Selectins and Integrins, Extracellular matrix of cells -	
	Proteoglycans, collagens, elastin, fibronectin and laminin.	
	Diseases related to G-protein defect.	
Credit IV	Cytoskeleton	15 Hrs
	Elements of cytoskeleton - microtubules, microfilaments and	
	intermediary filaments. Role of cytoskeleton in maintenance of	
	cell shape, providing structural rigidity, cell movement,	
	phagocytosis, cell viscosity, transport and other functions.	
	Factors influencing polymerisation of cytoskeltal elements.	
	Inhibitors of association and dissociation of cytoskeletal	
	elements. Mechanism of treadmilling.	
	Erythrocyte and non-erythrocyte cytoskeletons. Microvillar	
	cytoskeleton. Diseases associated with cytoskeleton	
	abnormalities.	
	Cell – cell interactions - tight junctions, gap junctions,	
	desmosomes and spot desmosomes.	

- 1. Molecular Cell Biology by H. Lodish, David Baltimore, et al W. H. Freeman Publication, 1996

- Biological Membranes Findlay and Evans
 Cell by Cooper
 Biochemistry, Lubert Strayer IIIrd Edition.

E-BCH 304A	Fermentation Technology (4 Cr)	60 Hrs
Credit I	Upstream Processing Microbial cell growth, kinetics and stoichiometry, various methods for growth measurement, strain improvement by mutation, genetic engineering, etc. Overproduction of metabolites, alternative carbon and nitrogen sources and their composition. Development of innocula for industrial fermentation, design of industrial production media. Alternate metabolic routines for utilization of carbon sources with their regulation and inter-linkage especially for glucose and hydrocarbons, preservation and maintenance of microbes.	15 Hrs

Credit II	Fermentation Design of fermenter, construction materials, various sterilization techniques for solid, liquid and gases, aeration and agitation, foam, auxillary equipments. Control of various parameters – online and offline monitoring, rheological properties of fermenter, role of computer in fermenter operation.	15 Hrs
Credit III	Batch, fed-batch, continuous fermentation and solid state fermentation. Effluent treatment, scale up and scale down. Types of fermenters, process economics, fermentation economics.	15 Hrs
Credit IV	Downstream Processing Principle, methodology, instrumentation and applications of cell homogenization techniques liquid-liquid extraction centrifugation, filtration, , distillation, ultrafiltration, precipitation, adsorption chromatography, ion exchange chromatography, gel filtration and affinity chromatography in clarification, concentration, isolation and purification of various metabolites from fermented media	15 Hrs

- 1. Moo-Young M. ed. (1985) Comprehensive Biotechnology vol: I & II, Pergamon Press N.Y.
- 2. Ratledge C and Kristiansen B. eds. (2001) Basic Biotechnology 2nd ed. Cambridge Univ Press Cambridge.
- 3. Old R.W and Primose S.D (1995) Principles of Gene Manipulation 5th ed. Blackwell Scientific Pub. Oxford.
- 4. Bailey J.E and Ollis D.F. (1986) Biochemical Engineering Fundamentals 2nd ed. McGraw Hill Book Company, N. Delhi.
- 5. Aiba S, Humphrey A. E. and N. F. Millis (1973) Biochemical Engineering, 2nd Edition University of Tokyo Press, Tokyo, Japan.
- 6. Stanbury P.F., Whitaker A, and Hall S.J. (1997) Principles of Fermentation Technology 2 nd ed.Aditya Books Pvt. Ltd, N.Delhi.
- 7. Mukhopadhaya S.N. (2001) Process Biotechnology Fundamentals. Viva Books Pvt. Ltd. N.Delhi.
- 8. Rehm H.J and Reed G. (1985) Biotechnology vol. I & II. VCH, Basel.
- 9. Stainer R. Y. Ingrahm J. L., Wheelis M. L. and Painter P. R. (1987) General Microbiology 5th Edition, Macmillan Press Ltd. London.

OR

E- BCH 304 B	Clinical Biochemistry – I	60 Hrs
Credit I	Nutrition Major and minor nutrients, composition of food - calorific values, physiological fuel value, biological value and nitrogen balance. Protein calorie malnutrition, Kwashiorkar and Marasmus. Nutrition in childhood, pregnancy old age and disorders such	15 Hrs
	as diabetes, obesity, coronary disorders and in starvation.	

]
	Laboratory Setup And Safety Requirements of setting up of clinical laboratory, SI units in clinical laboratory, collection preparation, preservation, and handling of clinical samples, quality control, Safety measures in clinical laboratory. Formulation of clinical and diagnostic kits, Safety aspects.	
Credit II	 Enzymes and Analytes in Clinical Biochemistry Use of LDH, SGPT, SGOT, acid and alkaline phosphatase, amylase, lipase, cholesterol, albumin, creatinine etc. in diagnosis and monitoring of disorders Blood Total and differential blood count, blood groups and Rh factor incompatibility, plasma proteins, types of anaemias and porphyries, molecular basis of hemoglobinopathies. 	15 Hrs
Credit III	 Liver Bilirubin metabolism, types of jaundice and clinical assesment, Acute and chronic liver diseases, cirrhosis, viral, metabolic and drug induced/toxic liver diseases, liver cancer, liver function tests, non-invasive investigations of liver function. Kidney Glomerular filtration rate, Renal threshold and clearance values, disorders of kidney, renal failure and proteinuria, renal tubular disorders and renal stones Renal function tests, artificial kidney. Heart Ischemic heart disease, role of enzymes and other proteins in assessment of myocardial infarction. Hypertension – types and causes of hypertension, basis of drug therapy for hypertension. 	15 Hrs
Credit IV Suggested Re	Carcinogenesis Tumor cells and onset of Cancer, Characteristics of neoplastic and transformed cells, mechanism of metastasis, Angiogenesis, A multi-hit model of cancer induction, Mutations: Gain and loss of function mutations, Accumulation of mutations and cancer, Oncogenes: RAS, SARC, ABL, Tumor suppresors. Causes of Cancer Genetic factors, Viruses, Chemical carcinogenesis, Physical stresses, Hormonal factors Cancer Therapy Radiation, Chemotherapy and Immunotherapy	15 Hrs

1. Clinical Chemistry by Kaplan L.A. and Pesce A. J. C. V. Mosby, 1989

- 2. Clinical Biochemistry by W. J. Marshall and S. K. Bangert, Churchill Livinston N.Y. 1995
- 3. Practical Clinical Biochemistry (Varley) by Gowenlock
- 4. Biochemical Aspects of Human Diseases by Elkeles and Tavill
- 5. Cancer Biology by Raymond Ruddon
- 6. Oncogenes by Burck Liu and Larrick
- 7. Toxicology by Stewart and Stoleman

OR

E-BCH 304C	Biochemical and Environmental Toxicology I (4 Cr)	60 Hrs
Credit I	Principles Of Toxicology Toxicants, therapeutic dose, dose-response curve, multiple toxicants response, serum enzymes behavior, hepatic and non-hepatic enzyme change during toxicity	15 Hrs
Credit II	Biotransformation Of Toxicants Toxicants entry and fate in living system, absorption, distribution, excretion and detoxification, phase I and phase II reactions and their interrelationships, components of mixed function oxidases, substrate - cytochrome P450 interactions, isoenzymes of cytochrome P450, inducers and inhibitors of microsomal metabolic transformation, lipoxygenase, lipid peroxidation, influence of various factors on the manifestation of toxicity. Extramicrosomal enzymes and their role in detoxification.	15 Hrs
Credit III	Mechanism Of Action Of Toxicants Chemotherapy - relation of chemical structure and biological activity, drug receptor interactions, effect of toxicants on structure, biosynthesis and catabolism of proteins lipids, carbohydrates and nucleic acids, toxic response of different tissues and organelles, tissue specificity	15 Hrs
Credit IV	Toxicity Testing Test protocol, genetic toxicity testing and mutagenesis assays:In vitro test system- bacterial mutation test, reversion test, Ames test, fluctuation tests and eukaryotic mutation test. In vivo mammalian mutation tests, host mediated assay and dominant lethal test. DNA repair assays. Chromosome damage test. Toxicological evaluation of recombinant DNA-derived proteins.	15 Hrs

- 1. Klaassen C D, Amdur M O & Doull J (1986) Casarett and Doull's Toxicology, III rd edition, Macmillan publishing company, New York.
- 2. Williams P L& Burson J L (1985) Industrial Toxicology, Van- Nostrand Reinhold, New York.
- 3. Hayes A W (1988) Principles and methods of toxicology, II nd edition, Raven press New York.
- 4. Stewart C P& Stolman A (1960) Toxicology, vol I, Academic press, New York.

P- BCH305	Laboratory Course V (2 Cr)(30 Hrs) 50 Marks
1.	Isolation of DNA and RNA.
	a) Separation of DNA by agarose gel electrophoresis
2.	Estimation of DNA and RNA
	a) Estimation of DNA by diphenyl amine method.
	b) Estimation of DNA by Spectrophotometric method.
	c) Estimation of RNA by orcinol method
3.	Induction of beta galactosidase in E. coli
4.	Estimation of specific aminoacids (Histidine, arginine, tyrosine and
	tryptophan)
5.	Isolation and characterization of cytochrome C - spectral analysis
6.	Isolation and characterization of hemoglobin
7.	Molecular cloning
	a) Plasmid vectors – extraction and purification
	b) Restriction sites in plasmid vectors
	c) Transformation of E. coli.
8.	Isolation of lectin and study of sugar specificity – mannose, glucose,
	galactose, amino sugars
9.	Isolation of chlorophyll a and b - study of ratio in different plant material
	and absorption spectrum
10.	Separation of plant pigments by chromatographic methods.
11.	Immunodiffusion - antigen antibody interaction, precipitin lines
	immunoelectrophoresis.
12.	Assay of antibiotics - penicillin, gentamycin and streptomycin.
13.	Quantitative determination of Na+ and K+ by flame photometry
14.	Production and characterization of alcohol and alcoholic beverages
15.	Induction of Nitrate reductase in plant sources

- Practical Biochemistry : An Introductory Course by Fiona Frais.
 Methods in Enzymology Vol. I by S.P.Colowick and N.O.Kaplan eds.

- 3. Basic Biochemical Methods 2nd ed by R.R.Alexander and J.M.Griffith
- 4. Biochemical Methods 2nd ed. by S.Sadasivam and A. Manickam.
- 5. Hawk's Physiological Chemistry ed. by Bernard L Oser.
- 6. A Textbook of Practical Biochemistry by David Plummer.
- 7. Laboratory Manual in Biochemistry by S. Jayaraman.

RP-BCH 306	Research Project	4 Cr
----------------------	------------------	------

SEMESTER - IV

BCH 401	Bioinformatics	60 Hrs
Credit I	 Proteomics: Protein Sequence Databases and Analysis: Protein Sequence Information, Primary Protein Sequence Databases, Secondary Protein Sequence Databases, Pair-wise Sequence Alignment, Gaps, Gap-penalties, Scoring Matrices, PAM250, BLOSUM62, Local and Global Sequence Alignment, Multiple Sequence Alignment, Physicochemical Properties using ExPASy, Useful Programme; Clustal W. Proteomics: Structural Databases, Protein Structure Prediction: Structural Databases; Protein Data bank (PDB), Nucleic Acid Data Bank (NDB), Molecular Modeling Data Bank (MMDB). Homology Modeling, Three-Dimensional Structure Prediction, Protein Folding and Functional Sites. 	15 Hrs
Credit II	Genomics: Nucleotide Sequence Databases and Analysis: Human Genome Project (HGP); Rough and Final Draft of HGP, Goals of the HGP, Genomics. Nucleotide Sequence Databases: GenBank, EMBL, DNA Data Bank of Japan (DDBJ). Restriction Enzymes, REBASE, Polymerase Chain Reaction, Primer Designing, Next Generation Sequencing, Application of BioEdit. Genomics: Gene Identification: Genome Information and Special Features, Coding Sequences (CDS), Untranslated Regions (UTR's), cDNA Library, Expressed Sequence Tags (EST), 16S rDNA Gene Sequencing. Approaches to Gene Identification; Masking Repetitive DNA, Database Search, Codon-bias Detection, Detecting Functional Sites in the DNA. Internet Resources for Gene Identification. Construction of Maps, Genetic Map, Physical Map, BLAST.	15 Hrs
Credit III	Structural Biology: Ribose-ring Puckering, RNA Folding, Ramachandran Plot, Prediction of α -helix, β -sheet, and 3_{10} -helix, Loop modeling, 3-D Structure	15 Hrs

	Validation, Molecular Docking, Protein-ligand Interactions,	
	Biophysical Aspects of Proteins and Nucleic Acids.	
	Molecular Modeling:	
	Functions of Molecular Modeling. Molecular Mechanics, Force Field,	
	•	
	Potential Energy Functions, Energy Minimization Methods, Single	
	Point Calculations, Full-geometry Optimization, Conformational	
	Search, Molecular Dynamics Simulations, Molecular Modeling	
	Packages.	
	Drug Designing	
	Computer Aided-Drug Discovery (CAMD), virtual screening, ZINC	
	database, PubChem database, QSAR, pharmacophore modeling,	
	ADMET properties.	
	Microarrays:	
	Concept of Microarrays; Spotted Arrays, Oligonucleotide Arrays,	
	Applications of Microarray Technology. Tools and Techniques in	
	Proteomics; Isotope Coded Affinity Tags (ICAT), Mass Spectroscopy	
	for Protein Analysis, MALDI-TOF, Electrospray Ionization (EST),	
Credit IV	Tandem Mass Spectroscopy (MS/MS) Analysis; Tryptic Digestion and	15 Hrs
	Peptide Fingerprinting (PMF).	
	Phylogenetic Analysis:	
	Evolution, Phylogenetic Tree, Methods of Phylogenetic Analysis;	
	Distance Based and Character Based Methods, Phylogenetic Analysis	
	Tool- Phylip.	

- 1. Introduction to Bioinformatics, (Atwood, T. K. and Parry-Smith, D. J).
- 2. An introduction to Computational Biochemistry. (C. Stain Tsai, A John Wiley and Sons, Inc., publications).
- 3. Developing Bioinformatics Computer Skills. (Cynthia Gibas and Per Jambeck).
- 4. Bioinformatics Methods and Applications Genomics, Proteomics and Drug Discovery. (Rastogi S. C. Mendiratta, and Rastogi P.)
- 5. Bioinformatics, Sequence and Genome Analysis by David Mount, Cold Spring Harbor Laboratory Press, NY, 2004.
- 6. NCBI Web site: <u>http://www.ncbi.nlm.nih.gov</u>

BCH 402	Bioenergetics (4 Cr)					
Credit I	Defination of Bioenergetics, Types of bioenergetics reactions energy change, Principles of bioenergetics, Activation reaction, Examples of major bioenergetics processes, Oxidative phosphorylation Biochemical anatomy of a mitochondrion, Membrane-Bound electron carriers, Mitochondrial Electron-Transfer Chain, effects of inhibitors of electron transfer Agents that interfere with oxidative phosphorylation. ATP Synthesis Chemiosmotic model, Peter Mitchell chemiosmotic hypothesis Mitochondrial ATP synthase complex, Binding-Change	15 Hrs				

	mechanism for ATP Synthesis, Energy rich compounds, Malate- aspartate shuttle, Glycerol 3-phosphate shuttle, Regulation of oxidative phosphorylation, Heat generation by uncoupled mitochondria, Mitochondria evolved from end symbiotic Bacteria, Mitochondrial genes: Their origin and the effects of mutations, Mutations in mitochondrial genes, The role of mitochondria in apoptosis and Oxidative stress, inflammation and cell death.	
Credit II	Defination, Types of Photosynthesis: Harvesting light energy General features of photophosphorylation, Photosynthetic pigments Main and Accessory pigments, food chain, food web, Light absorption, Reaction centers organization of photosystems in the thylakoid membrane. Hill reaction, The central photochemical event: Light- driven electron flow ATP synthesis by photophosphorylation, A proton gradient couples electron flow and Phosphorylation, Chemiosmotic model ,Chloroplasts Evolved from endosymbiotic bacteria, Carbohydrate biosynthesis in plants and bacteria, Photorespiration, Calvin cycle (C3) and Hatch-Slack pathway, (C4) CAM pathways, Biosynthesis of starch and sucrose ,Synthesis of cell wall polysaccharides. Types of plants C3and C4 and their role. Artificial photosynthesis. Importance of photosynthesis for life on earth.	15 Hrs
Credit III	History of nitrogen fixation, Importance of Nitrogen, Types of nitrogen fixation, Microorganisms, Symbiotic and non-symbiotic nitrogen fixation. Other plant symbionts, Nitrogen cycle, Root nodule formation, Nitrogenase enzyme complex - azoferredoxin and molybdoferrodoxin. Mechanism of N2 fixation, Physiological electron donors and mechanism of nitrogen reduction, Nif genes and its regulation, Microbial fertilizers. Marine nitrogen fixation. Current status of biofertilisers in India and their importance in Indian agriculture.	15 Hrs
Credit IV	Toxic compounds, definition types,Biotransformation of toxicants, Uptake and excretion of hydrophilic and lipophillic compounds, reactions phase I (modifications) phase II (conjugation) and phase III (transport) and their interrelationships, Monooxygenases, Cytochrome P450 (CYP) enzymes and Mixed function oxidases, biotranformation in animals, biotranformation in microorganisms, biotranformation in fungi, biotranformation in plants, modifications in biotransformation, syndromes associated. Effects of toxicants on body and their role in inflammations	15 Hrs

- Biochemistry by Lubert Stryer 4th Edition.
 Lehningers Principles of Biochemistry by Nelson and Cox.
- Biological nitrogen fixation by Frans J. de Bruijn.

- Detoxication Mechanisms by R.T.Williams 2nd Edition.
 A Text book of Modern Toxicology. John Wiley & Sons.

BCH 403	Neurochemistry (4 Cr)	60 Hrs
Credit I	 Nervous System Structure and function of the brain. Central Nervous System, Peripheral and Autonomic Nervous system. Cells of Nervous System – Neurons, Astrocytes, Glial cells, Oligodendrocytes and Schwan cells. Chemical composition of brain – utilization and uptake of glucose and amino acids. Neurotransmission Membrane potentials, Resting potential: Depolarization, repolarization and hyperpolarization, Action potential. Mechanism of axonal neurotransmission. Membrane channels: Types of channels, ion gated, voltage gated, chemically gated, mechanically gated and responsive to intracellular 	15 Hrs
	messengers.	
Credit II	 Neurotransmitters Synthesis, storage, release, uptake, degradation and action of neurotransmitters. Acetyl choline, GABA, Serotonin, Dopamine, Glutamate, Aspartate, Nitrous oxide, etc. Neuropeptides. Synaptic Transmission Cholinergic receptors – Nicotinic and Muscarinic receptors, Agonists and Antagonists – their mode of action and effects. Adrenergic receptors, serpentine receptors and intracellular signaling. 	
	Fast and slow receptors. Exocytosis of Neurotransmitter Role of synapsins, synaptogamins, SNAP, SNARE and other proteins in docking, exocyotosis and recycling of vesicles.	
	Learning and Memory Mechanism of short term memory and Long Term Potentiation. NMDA and AMPA glutamate receptors. Retrograde messengers in synaptic transmission.	
Credit III	Role of CAM kinase II, Calcium, protein kinases, cAMP, NO, Calpain and other proteins in memory and learning process. Synaptic plasticity	15 Hrs
	Interaction of Drugs with CNS Mechanism of action of anesthetics, analgesics, hallucinogens, depressants, stimulants and toxins on the nervous system. Addiction	

	and drugs of abuse.	
	Diseases of Nervous System Molecular basis of Parkinson's disease, Alzheimer's disease, Schizophrenia, Myasthenia gravis and Multiple sclerosis.	
Credit IV	 Biochemistry of Vision and Muscle Contraction Rod and cone cells, visual cycle, mechanism and regulation of vision, colour vision. Thick and thin filaments, interaction of actin and myosin muscle contraction, role of calcium and regulation of muscle contraction. Smooth muscle contraction and its regulation 	15 Hrs

- 1. Neurosciences by Dale Purves, 3rd edition, Sinauer Associates, Inc. Publishers, Sunderland, Massachusetts U.S.A., 2004
- 2. Neurochemistry by Ferdinand Hucho, VCH Publication, 1986
- 3. Molecular cell Biology by Lodish, Baltimore, et al W.H. Freeman & Co. 1996
- 4. Basic Neurochemistry by M. P. Spiegel

E-BCH 404A	Fermentation Technology II (4 Cr)	60 Hrs				
Credit I	Pharmaceutical Biotechnology Manufacturing by fermentative process and uses of Solvents – Ethanol, beer, wine, rum, whisky, butanol, Organic acids – Citric acid, Acetic acid, Lactic acid, Amino acids – l-glutamic acid, l-lysine, Extracellular enzymes – Amylase, protease, lipase, Renin, Glucose isomerase, Vitamins – Vitamin B group, Extracellular polysaccharides – Xanthan, pullulan, Antibiotics – B lactam - Penicillin, Anticancer – Adriamycin, Semisynthetic antibiotics.					
Credit II	Therapeutic proteins : Interferron, Monoclonal Antibodies Lasparginase, Hormones – insulin, Single cell protein, Single cell oil, Bioplastics : Polyhydroxyalkonates, Biogas, Flavor enhancers – MSG, Biotrasnformation reactions, Ergot alkaloids, Flavor and fragrances					
Credit III	Environmental Biotechnology Bioremediation, Role of microbe in petroleum industry, Bioleaching / Biomining, Biotechnological applications of extremophiles, Waste treatment, Microbial desulphurisation of coal. Food Biotechnology Cheese, Sauerkaut, edible mushroom, Baker's yeast	15 Hrs				
	Animal Tissue Culture Media requirements, preparation of medium and sterilization techniques. Advantages and disadvantages of natural and synthetic media. Culture methods – hanging drop, suspension and monolayer					

	culture. Behavior and characteristics of cells in culture. Primary and	15 Hrs
Credit IV	established cell lines, characteristics of transformed cells. Methods of	
	cell preservation. Organ culture – clot grid, chorioallantonic and ocular	
	culture, Applications of animal tissue culture – vaccines, cell biology,	
	drug testing, medical applications, etc., Stem cells and their	
	applications in medicine and tissue engineering	

- 1. Moo-Young M. ed. (1985) Comprehensive Biotechnology vol: III & IV. Pergamon press. N.Y.
- 2. Rehm H.J and Reed G eds. (1985) Biotechnology vol: III VIII. VCH, Basel.
- 3. Ratledge C and Kristiansen B eds. (2001) Basic Biotechnology 2nd ed. Cambridge Univ. Press. Cambridge.
- 4. Klegerman, M.E and Groves M.J. (1992) Pharmaceutical Biotechnology: Fundamentals and Essentials. Interpharm Press Ltd. Buffalo Grove IL.
- 5. Reed G. Ed. Prescott and Dunn's Industrial Microbiology . 4th edition CBS Pub. New Delhi.
- 6. Culture of Animal Cells by Ian Freshney.

OR

E-BCH 404B	Clinical Biochemistry II (4 Cr)					
Credit I	Inborn Errors Of Metabolism Disorders associated with carbohydrate metabolism-glycogen storage diseases, galactosemia Protein metabolism – phenylketonuria, albinism, alkaptonuria Lipid metabolism – Niemann – Pick disease, Tay-Sach's disease, I-cell disease Disorders due to chromosomal aberrations – Down's syndrome, Turner's syndrome, Klinefelter's syndrome molecular basis and symptoms.	15 Hrs				
Credit II	Ageing Physiological and biochemical changes in aeging. Different theories of ageing, importance of superoxide dismutase in ageing, plasticity and regeneration.					
Credit III	Endocrine Disorders Disorders of pituitary, thyroid, pancreatic and adrenal secretions, biochemical assessment, handling of samples, biological and immunological assays, use of ELISA, RIA and IRMA techniques in assay of hormones.	15 Hrs				
Credit IV	Neurological And Psychiatric Disorders Schizophrenia – types, symptoms, antipsychotic drugs Affective disorders - Unipolar and bipolar disorders, antidepressants Alzeimer's disease, Wernicke-Korsakoff syndrome, dementia, Wilson's disease Metabolic Disorders Gout, Atherosclerosis, Multiple sclerosis	15 Hrs				

- 1. Clinical Chemistry by Kaplan L.A. and Pesce A. J. C. V. Mosby, 1989
- Clinical Biochemistry by W. J. Marshall and S. K. Bangert, Churchill Livinston N.Y. 1995

OR

- 3. Practical Clinical Biochemistry (Varley) by Gowenlock
- 4. Biochemical Aspects of Human Diseases by Elkeles and Tavill

	OR					
E-BCH 404C	Biochemical and Environmental Toxicology II (4 Cr)					
Credit I	Genetic ToxicologyChemical mutagenesis, screening of mutagens, genetic diseases.Nature, mechanism and biological features of chemical carcinogenesis, carcinogens. Teratogenesis, teratogens and their action.Pesticide ToxicologyInsecticides: organochlorines, anticholinesterasesorganophosphates and carbamates. Fungicides, herbicides. Environmental consequences of pesticide toxicity. Biopesticides.					
Credit II	Food ToxicologyToxicology of food additives, animal and plant toxins.					
Credit III	Environmental Toxicology Air, water and soil pollution, environmental pollutants and their control. Pathogenic microorganisms, use of microorganisms in waste management, leaching of environmental pollutants. Industrial effluent toxicology	15 Hrs				
Credit IV	An Overview Of Regulatory Agencies Responsibilities of regulatory agencies. Management of toxicological risk, regulatory approaches, regulatory system and organizations.	15 Hrs				

- 1. Klaassen C D, Amdur M O & Doull J (1986) Casarett and Doull's Toxicology, III rd edition, Macmillan publishing company, New York.
- 2. Williams P L& Burson J L (1985) Industrial Toxicology, Van- Nostrand Reinhold, New York.
- 3. Hayes A W (1988) Principles and methods of toxicology, II nd edition, Raven press New York.
- 4. Stewart C P& Stolman A (19600 Toxicology, vol I, Academic press, New York.

RP-BCH 405	Research Project	6 Cr
---------------	------------------	------

9. Scheme of Teaching:

- Each theory paper will have 4 lectures of 60 min. per week.
- The theory paper will have classroom teaching of 60 hours per paper per semester.
- The classroom teaching will be done by Blackboard Chalk, Power Point Presentation, various ICT Tools, Question Answer way, Debate, Seminars, Quiz etc.
- The practical teaching will be done initially by theoretical explanation of experiment, procedural explanation, allowing the student to perform the experiment individually, discussion of results, possible outcome of the result and documentation of observations in notebook and recording all the details in journal which will be examined at the of practical examination.

10. Examination Pattern:

Theory:

• University examination will be of 80 marks for 3 hours as per university time-table and internal examination will be of 20 marks for 30 min by the respective teacher for each theory paper.

Practical:

• University examination will be conducted for practical after theory examination for 4 days including inspection day from 10:30 am to 05:30 pm. There will be no internal examination.

On Job Training:

• The student will submit his/her On Job Training report to the Teacher in Charge after completion of On Job Training. The department will conduct presentation cum viva for all the students. The internal evaluation committee/examiners will assess the On Job Training report and marks will be given.

Field Project:

• The student will submit his/her Field Project report to the Teacher in Charge completion of Field Project. The department will conduct presentation cum viva for all the students. The internal evaluation committee/examiners will assess the Field Project report and marks will be given.

Research Methodology:

• University examination will be of 80 marks and internal examination will be of 20 marks for Research Methodology theory paper.

11. Nature of Question Paper and Scheme of Marking:

a) University Theory Examination: Skeleton of theory question paper:

M.Sc. Part – I/Sem. – I Examination – 2024 (NEP - 2023)

Biochemistry

Title of the Subject

(Subject Code)

Day & Date:

Time:

Total Marks: 80

(16 Marks)

Instructions: 1) Question No. 1 is COMPULSORY.

- 2) All questions carry **EQUAL** marks.
- Solve any FOUR questions such that at least TWO questions must be from EACH section.

Q. 1 Objective

16 one line answer type questions

SECTION-I

Q.2 Essay type question	(16 Marks)
Q.3 Essay type question	(16 Marks)
Q.4 Essay type question	(16 Marks)
S	ECTION-II
Q.5 Write notes on	(2 x 08 Marks)
2 sub questions	
Q.6 Write short notes on	(4 x 04 Marks)
4 sub-questions	
Q.7 Write short notes on	(4 x 04 Marks)
4 sub-questions	

The theory examination will be conducted by the department as per the university examination time-table. The appointment of Chairman, Paper setters, paper assessment, moderation, appointment of internal/external Sr. Supervisor, Junior supervisor, Clerk and Peon for examination and other theory examination work will be carried out as per the university rules and regulations.

b) Internal Theory Examination:

The internal theory examination of 20 marks will be conducted by Teacher in-charge of the respective subject during the semester. The internal examination theory have 20 questions of 1 mark each. The internal theory paper will be solved on same question paper. Separate answer book will not be given. The examination time will be 30 mins. The internal theory marks will be submitted or uploaded in the university examination portal as per the instruction given by the examination section of the university.

c) University Practical Examination:

The university practical examination will be conducted in the department immediately after theory examination. The duration of practical examination will be 4 days including inspection day. The examination for both practical papers will be conducted simultaneously. The day, date, nature of question paper, marks distribution and internal/ external examiners will be decided by theory examination Chairman in consultation with practical paper in charge and laboratory staff. The separate sanction/approval will be required from examination section for practical examination time-table.

13.Equivalence of Courses:

Old Course				Equivalent Course			
Sem	Course	Title of the Old	Credit	Course	Title of the New	Credit	
No.	Code	Course	Crean	Code	Course	Crean	
III	CC 301	Genetic Engineering	4	BCH 301	Genetic Engineering	4	
Ш	CCS 302	Biomembranes and Cytoskeleton	4	BCH 303	Biomembranes and Cytoskeleton	4	
III	CCS 303A	Fermentation Technology I	4	E-BCH 304A	Fermentation Technology I	4	
III	CCS 303B	Clinical Biochemistry I	4	E-BCH 304B	Clinical Biochemistry I	4	
III	CCS 303C	Biochemical And Environmental Toxicology I	4	E-BCH 304C	Biochemical And Environmental Toxicology I	4	
III	DSE 304	Immunology	4	BCH 302	Immunology	4	
III	CCPR 305	Laboratory Course	4	-	-	-	
III	AEC 306	-	-	-	-	-	
III	EC 307	-	-	-	-		
IV	CC 401	Research Methodology, Entrepreneurshi p development and Communication skills	4	-	-	-	
IV	CCS 402	Neurochemistry and Carcinogenesis	4	BCH 403	Neurochemistry	4	
IV	CCS 403	Bioinformatics	4	BCH 401	Bioinformatics	4	
IV	DSE 404A	Fermentation Technology II	4	E-BCH 404A	Fermentation Technology II	4	
IV	DSE 404B	Clinical Biochemistry II	4	E-BCH 404B	Clinical Biochemistry II	4	

M. Sc. Part II (Semester III and IV)

IV	DSE 404B	Biochemical and Environmental Toxicology II	4	E-BCH 404C	Biochemical and Environmental Toxicology II	4
IV	CCPR 405	Laboratory Course	4	-	-	-
IV	SEC 206	-	-	-	-	-
IV	GE 407	-	-	-	-	-